
 

 

  
Abstract—Stein and coworkers have in vitro experiments of 

U87MG glioblastoma invasion on the patterns of growth and 
dispersion of U87MG tumour spheroids in a three-dimensional 
collagen-I gel. They identify and characterise discrete cellular 
mechanisms underlying invasive cell motility from the experimental 
data and propose a continuum mathematical model describing the 
behaviour of invasive cells observed in their experiments. However in 
their experiments it is seen that the U87MG invasive cells often exhibit 
more complicated and irregular behaviour than their simulations. We 
propose a mathematical model, which generalises the radially biased 
motility term of their model, based on some kind of taxis govering the 
behaviour of U87MG cells in the experiment. We show a 
mathematical analysis of our model and give more realistic computer 
simulations of the behaviour of invasive cells by using our 
mathematical model. 
 

Keywords—Glioblastoma, tumour, radially biased motility, 
collagen gel, mathematical model, mathematical analysis, computer 
simulation, existence of solution, N-cadherin. 

I. INTRODUCTION 
y the remarkable progress in medical technology and 
image diagnostic technique, in clinical medicine the extent 

of tumour invasion can be detected precisely. Especially 
glioblastoma multiforme (GBM) is the most malignant form of 
brain cancer ([7], [26]). Nevertheless the outcome for patients 
with glioblastoma is still extremely poor. It confounds the 
clinical management of glioblastomas due to the high local 
invasiveness of these cancer cells enabling tumour cells to 
disperse from the main tumour mass into the surrounding 
normal brain, so that dispersed glioma cells are out of reach of 
surgery, radiation, and chemotherapy. On the other hand the 
details of microscopic behaviour of invasive cells is not still 
well known and the mechanisms governing cellular level 
invasion are poorly understood.  Actually several mechanisms 
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such as chemokinesis (undirected motility), chemotaxis 
(directed motility along chemical gradients), haptotaxis, 
cell-cell adhesion, and cell-cell signaling, upregulation of 
pro-survival pathways, and microenvironmental cues are 
seemed to be involved in the process from stationary to a 
migratory/invasive phenotype ([7], [11]- [13]). Hence the 
investigation of such cellular level mechanisms could made a 
valuable contribution to the clinical treatment. 

 
In 2007 Stein et al. [30] presented results from their in vitro 

experiment where tumour spheroids are grown in 
three-dimensional collagen gels (cf. [4], [8], [9], [28], [32]). 
They describe a continuum mathematical model, based on a 
Swanson's model (1.1) (see [29]), that allows us to 
quantitatively interpret the data. Their mathematical model 
describes a characteristic behaviour of the U87MG invasive 
cells that they have a strong radial directional motility away 
from the spheroid center(see Fig. 2(a)). Fitting the model to the 
experimental data it is considered that glioma cells invade in a 
more biased manner, away from the tumour spheroid and are 
shed from the spheroid at a great rate, suggesting lower cell-cell 
adhesion and they specified the extent of invasive cell 
population. If we follow to their mathematical model, the path 
of invasive cell should diffuse along a radial direction and at a 
constant velocity. However it is observed that they often exhibit 
more complicated and unexpected behaviour, such as greatly 
turn around or turn back to one's path or so. In order to describe 
such cell behaviour we improve their radially biased motility 
term and give our mathematical model.   

The goal of this paper is to gain a better understanding of the 
mechanism governing invasive cell behaviour. For this purpose 
we propose a mathematical model and show rigorous 
mathematical analysis of our model and computer simulations 
of cell motility closer to real trajectories from the experiment 
than Stein's simulation in [30], based on our mathematical 
model. Finally by applying the same manner we show time 
depending computer simulations of the experiments ([30], [8]).  

 

A. Mathematical models 
 
Several mathematical models have been known in the 

literature for cell invasion ([1]- [3], [5], [10], [35]). In the model 
for core and invasive cell behaviour by Swanson et al. [29], 
tumour growth is described by a reaction-diffusion equation: 
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where cell concentration u  describes motility along undirected, 
random paths as a function of position and time, cells 
throughout the tumour are assumed to proliferate at a constant 
rate g  until they reach a limiting density, maxu , the constant 
D  is the diffusion (undirected motion); the larger D  becomes, 
the more motile the cells. This model assumes spherical 
symmetry of the multicellular tumour spheroid. The 
single-population reaction-diffusion model has been used with 
some success to describe how a tumour responds to 
chemotherapy and why surgical removal of GBM is usually not 
effective ([29]). This model is only applicable for tumours that 
are 31mm>  and it fails for smaller tumours. 

Stein et al.[30] considered in their model that the invasive 
cells are biased to move away from the center of the tumour 
spheroid at an average speed, v  (cf. [32], [34]). It has been 
observed that invasive cells may follow to radially directed 
paths away from the tumour spheroid. The cause of such biased 
motility might be due to some attractant in the environment, 
specified in Remark1, repulsion from waste products produced 
by the spheroid, or a realignment of the collagen gel as the cells 
move. They proposed the following equation for the evolution 
of the cell population, u . 


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     (1.2)  

The behaviour of invasive cells can be described by four 
parameters: { }, , ,D v s g . Invasive cells are introduced into the 
population through shedding from the core surface, s , and 
proliferation, g . Cell motility is modeled as having an 
undirected component, D , and a radially biased motile 
constant, v . In the above equation, δ  is the Dirac delta 
function, r  is the spatial coordinate for the radial distance from 
the tumour center, and ( )R t  is the radius of the core at time t . 

In the experiment of glioma tumour 3D invasion in collagen 
gel by Stein et al. (cf. [30], [30],[32]), invasive cells with the 
radially directed motility away from the spheroid center make a 
progress and then they often exhibit more complicated 
behaviour (see Fig. 1(a), 2(a)). It seems that such behaviour of 
invasive cells can not be well reproduced by their simulation 
shown in Fig. 1(b), because their radially biased motility term 
of (1.2) is of the linear form. In order to describe nonlinear 
paths of cells we need to consider a mathematical model 
generalised the radially biased term in (1.2) to a nonlinear  term 
taking account of a mechanism of taxis govering cell behaviour. 
Then we give rigorous mathematical analysis of our model and 
computer simulation of cell motility based on it. 

 
                         (a)                                                 (b) 
Fig.1 (a) Cell trajectories (b) Simulation of cell trajectories, 

from in vitro experiment of U87MG glioma tumour 3D 
invasion in collagen-I gel performed by Stein and coworkers in 
[32] (cf. [30]). 
In Fig. 1, compared (a) with (b), each path of (b) is obviously 
seen to be much simpler than (a). 

B. Mathematical model generalising the radially biased 
motility term 

Since we especially focus on the behaviour of each 
dispersing cell leaving from the center of the spheroid, 
neglecting the effect of δ  function and proliferation in (1.2), 
that is, we consider instead of (1.2) 

2 .r
u D u v u
t

∂
= ∇ − ∇ ⋅

∂
　                        (1.3)  

Now we generalise r u∇ ⋅  to a nonlinear term as follows. 

For ( )1, , nr r r=   we have 
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replacing ( )1 1 xn nx r r+ +  by ( )log wα +  for a new unknown 
function w  and a non-negative constant α  

( )( )log .u wα= ∇ ⋅ ∇ +                     (1.4)  

Therefore (1.3) is extended to the following equation. 

( )( )2 log .u D u u w
t

α∂
= ∇ − ∇ ⋅ ∇ +

∂
　          (1.5) 

In fact, when we put 1 1 n nx r x rw e α+ += − , it is seen that 

( ) 1 1log n nw x r x rα + = + + , which indicates that (1.5) is a 
generalisation of (1.3). (1.5) is considered by Othmer-Stevens 
[25] in a more general form and can be a continuum model of 
reinforced random walk where w  is called control species and 

( )log wα +  is a sensitivity function (see Davis [6]). Hence it is 
seen that (1.5) admits random walk of the invasive cell along 
the radial direction away from the center of the spheroid. The 
following system for (1.5) is applied to a understanding of 
tumour angiogenesis ([2], [24]). 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 11, 2017

ISSN: 1998-0140 108



 

 

( )( )
( )

( )

( )

2
0

0

0

0(1.6)

0 0

( ,0

log

) ( )

u D u
t

in
w kuw in
t

u on
n

u w

u x u x in

χ α

∂Ω

∇
∂ = ∇ − ∇ ⋅ ∂

Ω× ∞
∂ = − Ω× ∞ ∂
 ∂

= ∂Ω× ∞∂
= Ω

+



　 　 　 　 　 　 　 　 　 　 　 　 ，

　 　 　 　 　 　 　 ，

　 　 　 　 　 　 　 ，

　 　 　 　 　 　

 

where D  is a positive constant, Ω  is a bounded domain in nR  
and ∂Ω  is a smooth boundary of Ω  and n  is the outer unit 
normal vector and 0χ  is a positive constant .  

The second equation describes the decay of w  by the 
interaction between each endothelial cell and some attractant. 
In this paper we might consider that such attractant is 
N-cadherin. Therefore in such sense our mathematical model 
fathfully describes the biological mechanism of the cell 
migration in the experiment. 

 
Remark 1. In fact,it is known that N-cadherin is produced 

on the surface of the invasive tumour cell due to the interaction 
with collagen-I and is free to diffuse. Such active N-cadherin 
induces anchoring to actin cytoskelton. It is allowed to cause 
actintreadmiring and the generation of traction forces against 
the neighbourhood. Finally it triggers tumour cells migration 
(see [23]). 
 

II. MATHEMATICAL ANALYSIS 
In this section we review known mathematical results related 

to Othmer and Stevens model and apply them to (1.6). They 
play an important role to carry out the computer simulation. 

A. Known result 
In Kubo [17] and Kubo and Kimura [18] the following initial 

Neumann-boundary value problem of nonlinear evolution 
equations is considered (cf. [19]-[22]). 

( )
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Suppose the following assumption ( )A . 
 
( )A   Let r rB B R R+ += ×

, where rB  is a ball of radius r  

at 0  in 2R . For any constant 0r >  and ( )1 2, rs s B +∈  there 
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0b >  and any integer [ ]/ 2 3m n≥ +  
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Now let us introduce function spaces. First, ( )lH Ω  denotes 

the Sobolev space ( ),2lW Ω  of order l  on Ω . For functions 

( ),h x t  and ( ),k x t  defined in [ )0,Ω× ∞ , we put 
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where ( )1
, , , , 1, ,

n ix x x x
i

i n
x
∂

∂ = ∂ ∂ ∂ = =
∂

 　  and  

( )1, , nβ β β=   is a multi-index. 
The eigenvalues of −∆  with the homogeneous Neumann 

boundary conditions are denoted by { }1,2,i iλ =  , which are 

arranged as 20 iλ λ< ≤ ≤ → +∞ , and ( )i i xϕ ϕ=  indicates 

the 2L  normalised eigenfunction corresponding to iλ . 

For a non-negative integer l , we denote by ( )lW Ω  the 

function space spanned by { }1 2, , ,nϕ ϕ ϕ   in ( )lH Ω . 

Taking 1 0λ ≠  into account, it is noticed that we have 

( ) 0h x dx
Ω

=∫  for ( ) ( )lh x W∈ Ω , which enables us to use 

Poincare's Inequality. Then the following result is obtained in 
[17] and [18]. 
 
Theorem  2.       Assume that (A) holds and  

( ) ( )( ) ( ) ( )1
0 1, m mh x h x W W+∈ Ω × Ω  for ( ) ( )0 0h x u x a= −  

and ( ) ( )1 1h x u x b= − . For sufficiently large a  and any 0b >  
there is a solution 

( ) ( )( ), ,u x t a bt v x t= + +  [ ) ( )( )
1

0
0, ;i m i

i
C H −

=
∈ ∞ Ω  

to ( )NE  such that for ( )1
1 1u u x dx−

Ω
= Ω ∫  

( ) 1 1
lim , 0.t mt

u x t u
−→∞

− = 　                         (2.7) 

 
Remark 3.  The above theorem implies that ( ),u x t  is a 

classical solution of ( )NE  and ( ),tu x t b→ as t → ∞ . Also 
this result justifies the computer simulation based on the 
mathematical model (1.6) shown in section III. 
 

B. Application to mathematical models 
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(i) We apply Theorem 1 to our problem (1.6) following to 
Levin and Sleeman [24]. Put 
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which is regarded as the same type of equation as (2.1) and 
satisfies the condition ( )A . Therefore it is clear that Theorem 1 
holds for (1.6) and it implies that there exists a classical 
solution ( ),u x t  to (1.6) such that 

( ) 0 1
lim , 0.

mt
u x t u

−→∞
− =  

(ii) In [25] Othmer and Stevens proposed a parabolic-ODE 
system arising from reinforced random walk, which is applied 
to chemotactic aggregation of myxobacteria etc., 

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 0

log ,  ,

0, 2.8

log 0, 0, 2.9

,0 , ,0 0, 2.10

t tP D P D P W W kWP

in

PP n on
W

P x P x W x W x in

= ∆ − ∇ ⋅ ∇ Φ = ±

Ω× ∞

 
∇ ⋅ = ∂Ω× Τ  Φ 

= = ≥ Ω

　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　    

　 　  　 　 　       　

　 　 　 　     　

where the sensitivity function is given by Levin and Sleeman 
[24] in the form 

( ) ,  , 0,
a

WW
W

α α β
β

 +
Φ = > + 

 

the unknown functions ( ),P P x t=  and ( ),W W x t=  stand for 
the particle density of a particular species and the density of 
local control species, respectively. Levine and Sleeman [24] 
applied the model for the understanding of tumour 
angiogenesis. The existence of global solutions of (2.8)-(2.10) 
are studied (see [14]-[22]) in the same manner as in (i).  

We can carry out computer simulations of these models 
(i)-(ii) by the rule of reinforced random walk because 
Othmer-Stevens model is a continuum model of reinforced 
random walk (see Davis [6]). Since (1.6) is considered as a 
special case of Othmer-Stevens model, the simulation of (1.6) 
can be conducted by using the rule of reinforced random walk, 
which shown in Fig. 3 in the next section. As mentioned in 
Remark 1, the cause of radially biased motility of invasive cells 
mainly depends on N-cadhelin, which in our model induce 
random walk radially biased. 

On the other hand, the simulation of a mathematical model of 
in vitro experiment for endothelial cell migration is given by 
[27], [31] in the similar way. 

III. COMPUTER SIMULATIONS 
In this section we carry out random walk type of computer 

simulation based on our mathematical model following to 
Sleeman and Wallis [33] (see [25]). 

In Fig. 2(a) we show photos of the 2D projection of the 
experiment in vitro of U87MG glioma tumour 3D invasion in 

collagen gel performed by Eke and coworkers in [8], which is 
the same type of experiment as Stein et al.([30]). In the 
experiment of glioma tumour 3D invasion in collagen gel, 
invasive cells with the radially directed motility away from the 
spheroid center make a progress and later they often exhibit 
complicated behaviour (see Fig. 2(b)). 
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Fig. 2(a) The photos of the 2D projection of the experiment 

in vitro of glioma tumour 3D invasion in collagen gel 
performed by Eke and coworkers in [8] for one day. First the 
tumour spheroid is set at the center of Collagen-I gel. Then by 
the interaction between Collagen-I and glioma cells cell-cell 
adhesion of tumour cells is weaken and they gain the ability of 
migration and invasion. They diffuse in the radial direction 
away from the spheroid center and make a progress. 

 
In the last image of Fig. 2(a) at t=23:20 we choose seven 

typical curved paths of invasive cells from the experiment and 
draw them as solid lines marking by (a)-(c): moderately curved 
paths, (d)-(g): greatly curved trajectries of invasive cells on the 
picture (see Fig. 2(b)). In Fig. 3 we show the simulations of the 
solid lines of Fig. 2(b). 

All the computer simulations shown in this section are 
conducted by Mathematica 8. 

We can reproduce (a)-(g) of Fig. 2(b) by using 3D random 
walk type of simulations based on our mathematical model in 
Fig. 3. It is obviously much closer to the real paths than Stein's 
type of simulation Fig. 1 (b). 

 

 
 

Fig. 2(b) The last image of Fig. 2(a) and trajectories of 
typical motility of invasive cells (a)-(g). The path (c) shows that 
the cell first radiates and after that turns around greatly. In the 
path (b) it is observed that the cell changes the direction several 
times. In the path (a) once the cell arrives at the edge of the 
extent of invasive cells, it suddenly turns back to one's way and 
after that moves from the center to the outside again. The paths 
(d)-(g) are curved much more greatly. 

 
Fig. 3 2D projection of our 3D computer simulations of the 

experiment by Eke et al. 
 
In the following we show 3D simulations of the cell behaviour 

observed in the the experiment of U87MG glioma 3D invasion 
by Eke et al., which are based on the same manner as used for 
(a)-(g) in Fig. 3. First 180 particles is set in the center and the 
change of the motility of them is observed along the axis of 
time. 

  

t=0.8h

t=1.6h
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 t=21.6h 

 t=22.4h 

 t=23.2h 
Fig. 4 Simulations of Fig. 2(a) by 180 particles applied the 

manner used to obtain (a)-(g) in Fig. 2(b). It is observed that the 
extent of the particles is corresponding to the one of invasive 
cell population in the experiment along the axis of time. 
 

IV. CONCLUSION 
The data of the in vitro experiment by Stein et al. , Eke et al. 

imply that the tumour cells start to move radially away from the 
tumour spheroid and after that the velocity decreases in the 
radial direction. It seems to be very important to gain a 
mathematical understanding of the mechanism of invasion in 
such in vitro experiment. However in the mathematical model 
given by Stein et al. [30] the radially biased component implies 
that the cell motility with a constant velocity and a radially 
linear direction is quite different from real cell paths observed 

in the experiment.  
Considering that the cause of radial bias is due to N-cadhelin, 

we propose a mathematical model, which improves the radially 
biased motility term of the model of [30] so that it covers more 
realistic motility as observed in the experiment of Eke et al. [8], 
Stein et al. [30] [32].  

In fact, we choose some typical paths of U87MG cells in the 
experiment as shown in Fig. 2(b). We show a rigorous 
mathematical analysis of our model and give computer 
simulations corresponding to solid lines in Fig. 2(b) based on 
our mathematical model, which realise more realistic 
simulation of invasive cell than Stein's type of ones. 

Finally we give simulations along the axis of time of the 
experiment by Eke et al., which is same type of Stein et al, 
based on the same manner used for the simulations (a)-(g) in 
Fig. 3. We can observe that the extent of the particles is 
corresponding to the one of invasive cell population in the 
experiment. 
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